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1. Introduction 

 

Let 1, nn  be a sequence of independent identically distributed random 

variables determined on the parabality space  P,,F . 

Let us consider the first order autoregressive process  1AR  in the following 

form 

    ,1,1   nmXmX nnn                                                          (1) 

where the initial value 0X  of the process is independent of the innovation  n , 

and   ,, Rm    some fixed numbers. 

The scheme  1AR   in the form (1) has been considered in the works ([4], [5], 

[7], [8], [10], [13-16]. 

For the case of  1AR  squence generated by the innovation with the normal 

distribution with parameters  2, , the problems of testing statistical hypotheses 

with respect to the parameters am ,,  and 2  have been studied in the paper [1-

3,12]. 

To the specified work linear and nonlinear boundary problems for  1AR  

under different assumptions with respect to distribution of innovation have been 

studied for the case 0m . 
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At present great attention is paid to the study of limit theorems for family of 

the passige time of  first order autoregressive process   1RCAR  with the random 

coefficient  .  

The  1RCAR   processes are first introduced and studied in the work [17] and 

[18]. 

Random coefficient autoregression processes have application in time series 

theory (see [18]). 

In the present work we study linear boundary problems for the sum 




n

k
kn XL

0

 in the case of  1RCAR . 

We will suppoce that the random variable   is independent of random 

variables 0X  and in the independent of innnevation n . 

 

2. Formulation and proof of main results 
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Hence we have 
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The condition 
2

0XE  and Markov inequality yield that   




nas
n

mX
00 .                                                        (3) 

Show that provided   1 P  there exists a unique stationary solution of 

the equation (1) refresented in the form  


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
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0i
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i
n mX  .                                                                   (4) 

The indicated series converges in mean square sence.  

It is easy to check that (4) is the solution of the equation (1). From (1) by 

means successive iterations we can obtain the following representation for  

       nnnnnn mXmXmX  121  
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From this equality we have  
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Thus, (4) is a unique solution of the equation (1) in the class of stationary 

sequences with a finite second moment. 

We have show that in the right side of the equality (2) the first term converges 

zero in probability  
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Indeed, by virtue of the Markov inequality we have  

 
n

nXE
nnXP

n

n

2


  .                                                      (7) 

From (5), by virtue of independence of random variables   and n  and 
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Therefore, (6) follows from (7). 

For the last term in the right side of (2), according to the central limit theorem 

we have 
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Then from (3), (6) and (8) we complete the proof of theorem 1. 

By means of theorem 1, we can study asymptotic behavior of a family of the 

moments of the first intersection  

 aLn na  :0inf                                                                (9) 

of the level 0a  by the sum 1,
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k
kn . 

Similar problems have been studied in [14-16] the case when the coefficient 

  in the model (1) is not a random value.  

We have 

Theorem 2. Let conditions of Theorem 1 be fulfilled, and suppose that 
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Proof. By the definition of the variable a  it is easy to be convinced that the 

following equality is fulfilled: 
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This means that  aas
P

a , . 

It is easy to understand that the variables   increase as functions of a . 

Therefore statement 2) is valid.  

Prove statement 3). By the definition of the variable a  we can write 
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For this we need the following fact formulated as a lemma. 

 

Lemma 1. Let the squence of random variables n  almost surely converge to 

the random variable   and the family of integral-valued non-negative random 
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By the conditions of the lemma     1 BPAP . 

It is clear that the event C  will happen if events A  an B  happen 

simultemeously, i.e. CAB .  

Then, from the obvious inequality  
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Lemma 1 is proved. 

Convergence (13) follows by means of lemma 1 from condition (10) and 

statement 1) of the theorem proved. 
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For that, according to theorem 1, by virtue of statement 3) of theorem 1 and 

Anscombe theorem of sufies to show that the sequence 1,* 
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uniformly continuous in parability. To this end, we will need the following known 

facts [6], [19] formulated in the form of a lemma. 
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..

 convergence yields (17) (see. [19], p. 41). 
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The property of uniform continuity of the sequence 2,* nLn  follows from 

the equality (2) and condition (14), since it is known well that the squence 
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 , 1n  is uniformily continuous in probability [19]. 

Then, by the statement 3) of Theorem 2 and lemma of Theorem 1 we have 
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Hence it is seen that the squence 1, n
n

X n  is uniformly continuous in 

probability due to lemma 2.  

Then (10) follows by virtue of (6), lemma 1. 

Thus, from (15), (16) and (18) we have  
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Hence, taking into account statement 3) of theorem 2 and equality 

   xx  1  we complete the proof of theorem 3. 
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